Solidifying the link for FGS and HIV – what else is <u>still</u> needed

A Cochrane review?

Russell Stothard LSTM

Session L FGS Workshop January 2015

"Scientists have discovered....."

Just being published, often the consensus assumes it isn't good quality!

Reliability of results depends on many factors:

- Size of the study
- Size of the effect you're trying to measure
- Study bias e.g. design of study, type of analysis undertaken
- Financial incentives
- Size of the scientific community

 Traditionally, systematic reviews have focused on combining information from multiple clinical trials

• Anyone can undertake a systematic review, however Cochrane Reviews, prepared by the Cochrane Collaboration are considered to the 'gold-

standard'

 Rigorous guidelines hav for undertaking system

 They also host the Cock <u>http://www.thecochral</u> of Controlled Trials (CE

 Cochrane guidelines fo studies ne Cochrane Collaboration dbook.cochrane.org/)

Cochrane Central Register

pposed to observational

MOOSE (Meta-analysis of Observational Studies in Epidemiology)
 http://jama.jamanetwork.com/article.aspx?articleid=192614

The birth of a 'cottage' industry

OPEN & ACCESS Freely available online

PLOS MEDICINE

Policy Forum

Seventy-Five Trials and Eleven Systematic Reviews a Day: How Will We Ever Keep Up?

Hilda Bastian1*, Paul Glasziou2, Iain Chalmers3

1 German Institute for Quality and Efficiency in Health Care (IQWIG), Cologne, Germany, 2 Centre for Research in Evidence-Based Practice, Faculty of Health Sciences, Bond University, Gold Coast, Australia, 3 James Lind Library, James Lind Initiative, Oxford, United Kingdom

Thirty years ago, and a quarter of a century after randomised trials had become widely accepted, Archie Cochrane reproached the medical profession for not having managed to organise a "critical summary, by speciality or subspeciality, adapted periodically, of all relevant randomised controlled trials" [1]. Thirty years after Cochrane's reproach we feel it is timely to consider the extent to which health professionals, the public and policymakers could now use "critical summaries" of trials for their decision-making.

Summary Points

- When Archie Cochrane reproached the medical profession for not having critical summaries of all randomised controlled trials, about 14 reports of trials were being published per day. There are now 75 trials, and 11 systematic reviews of trials, per day and a plateau in growth has not yet been reached.
- Although trials, reviews, and health technology assessments have undoubtedly
 had major impacts, the staple of medical literature synthesis remains the nonsystematic narrative review. Only a small minority of trial reports are being
 analysed in up-to-date systematic reviews. Given the constraints, Archie
 Cochrane's vision will not be achieved without some serious changes in course.
- To meet the needs of patients, clinicians, and policymakers, unnecessary trials need to be reduced, and systematic reviews need to be prioritised. Streamlining

How to begin a systematic review

Step 1: Identify your research question, the outcome you want to measure, and related key words & phrases

To evaluate association/interventions between schistosomiasis and HIV, etc.

Step 2: Establish your inclusion and exclusion criteria

Cluster-randomized trials and non-randomized controlled studies comparing therapeutic MDA versus placebo or no MDA, and uncontrolled before-and-after studies comparing post-MDA to baseline data

Step 3: Search for relevant studies using the appropriate key words

Cochrane register (CENTRAL), PubMed, Reference lists, conference proceedings

Step 4: Screen the results based on titles and abstracts

Step 5: Review full text of remaining studies

http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD008846.pub2/full

Meta-analysis methodology: Interpretation of results

Deworming drugs for soil-transmitted intestinal worms in children: effects on nutritional indicators, haemoglobin and school performance (Review)

Review: Deworming drugs for soil-transmitted intestinal worms in children: effects on nutritional indicators, haemoglobin and s Comparison: 1 Screened for infection - Single dose

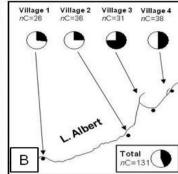
Outcome: 1 Weight (kg)

Study or subgroup	Deworming	Control			Mean Difference				
	N N	Mean(SD)	N	Mean(SD)		IV,Fi	xed,95% CI		
Adams 1994	28	1 (0.32)	27	0.3 (0.51)				-	_
Freij 1979a (1)	6	12.3 (2.91)	7	12.1 (2.29)	•				-
Sarkar 2002	40	0.92 (0.84)	41	0.54 (0.45)			-		
Total (95% CI) 74 Heterogeneity: Chi² = 2.92, df = 2 (P = 0.23); Test for overall effect: Z = 6.35 (P < 0.00001)		0001)	75					•	
Test for subgroup diff	erences: Not appl	icable							
				Favours contro	-1 ol	-0.5	0 Favours	0.5 dewormi	1 ng

(1) End value data

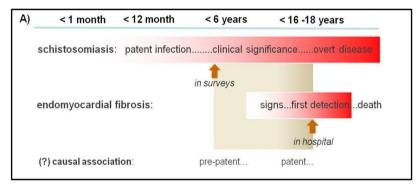
Risk of bias

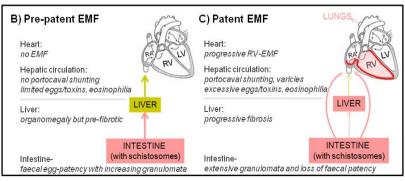
What about bias introduced when selecting studies to include in the analysis?


Type of reporting bias	Definition				
Publication bias	The publication or non-publication of research findings, depending on the nature and direction of the results				
Time lag bias	The rapid or delayed publication of research findings, depending on the nature and direction of the results				
Multiple (duplicate) publication bias	The multiple or singular publication of research findings depending on the nature and direction of the results				
Location bias	The publication of research findings in journals with different ease of access or levels of indexing in standard databases, depending on the nature and direction of results.				
Citation bias	The citation or non-citation of research findings, depending on the nature and direction of the results				
Language bias	The publication of research findings in a particular language, depending on the nature and direction of the results				
Outcome reporting bias	The selective reporting of some outcomes but not others, depending on the nature and direction of the results				

The crux of our problem: timings

CONCEPT FUNDING NOTE:


ASSESSESSING AN EPIDEMIOLOGICAL CONNECTION BETWEEN INTESTINAL SCHISTOSOMIASIS AND ENDOMYOCARDIAL FIBROSIS (EMF) IN UGANDA



A direct analogy with FGS and HIV

- 1. Poor surveillance
- 2. Limited primary literature
- 3. Plausible causality
- 4. Slow temporal associations

Case reports future 'RCT' not ethical

Disadvantages of undertaking meta-analyses

- No two studies are the same, hence combining them may lead to inaccuracies

 - No Cochrane Review...FGS/HIV is further marginalised. How can we stress the absurdity of this situation more?

and unpublished studies should be included in

- Journals tend to favour statistically significant results
- Non-significant or negative results may not be publicised